Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Iron Ore 101

Posted on June 01, 2013

Iron ore yields metallic iron (Fe) when heated in the presence of a reducing agent such as coke. Iron ore usually consists of iron oxides and carbonates.

Its most important mineral forms are magnetite (Fe3O4, 72.4% Fe), hematite (Fe2O3, 69.9% Fe) and siderite (FeCO3, 48.29% Fe). In about 1670, deposits of bog iron were found near Trois-Rivières, Qué, and by the 1740s LES FORGES SAINT-MAURICE was producing top-quality cast iron stoves, pots, kettles, bullets and cannons. There are iron ore producers in Newfoundland, Québec and BC.

Canada produces approximately 35 million tonnes of iron ore annually.

Other Links

Seeking Alpha, The Important Factors to Consider When Investing in Iron Ore



Geology & Mineralization

Posted on June 01, 2013

Geological Setting

The geology chapter in the report is extensive in order to understand the rock types, the facies and the minerals associated with the iron ore mineralization very much related to the metallurgical test work. The lithology, mineralogy, grain size and metamorphism differ slightly between the deposits.

Deposit A

The rock types and the mineral descriptions, as well as the association, relation and the continuity in the field were summarized in a publication (Gregory, A.F. 1958), based on general knowledge of iron formations at that time. According to the Gregory description, all rocks in the area are of Precambrian age. The oldest rocks appear to be the Schist Complex, a series of schistose interbedded pyroclastics and sediments, including the magnetite iron formation. Much of the iron formation is a simple, uniform, laminated rock comprising fine to very fine grained quartz and magnetite with minor accessory minerals. Alternating laminae are black magnetite and white quartzite bands. They are variable in thickness from very fine to coarse (one inch) and often are highly contorted by flowage folding. The iron formation is estimated to vary from 30% to 60% magnetite with an average of about 45-50%. Intercalated schist horizons lower the grade. The iron formation occurs in essentially a homoclinal sequence with prominent satellitic folding. The homocline comprises the east limb of an inclined isoclinal anticline whose axis trends along the west edge of the present map area.

Deposit D

The following local geology description is directly taken from R.E. Jones (1959). The bodies of quartz-magnetite iron formation and associated garnetiferous schists are folded and isolated within a large area of granitic rock. In the metamorphic rocks, two major groups are recognized and termed Quartz Magnetite Iron Formation and Schist (generally garniteferous biotite schist). The deposit is a complexly folded body of quartz magnetite iron formation and associated schist isolated, at least for several miles along the surface, within the granite and granite gneiss. Metamorphism was not affected without severe structural changes. In general, iron formation occupies two synclines plunging gently south to southeastward, one to the west and the other to the east of the fault, are presumed to follow the central north-south trench.

Deposit E

The local geology description is directly taken from F.R. Edmunds (1960). The deposit consists of a series of ferruginous quartzite and minor schistose non-magnetic intercalations. Structurally, the deposit is an asymmetrical syncline, the axis of which plunges east at about 26°. A minor anticlinal development in the northern limb and intense local placations render the structure more complex. Two major groups are recognized and termed Schist and Iron Formation. The formations comprise an asymmetric syncline plunging to the east. The southern part appears to be dipping more steeply, and to be more tightly folded, to east-west, and is returned at its eastern extremity in a small anticlinal structure. The northern limb also develops into a subsidiary anticline, fading westwards towards its core, so that along the western contact of the deposit only the trough structure exists.

Great Whale Iron Property - MINERALIZATION

The mineralization is associated with iron ore formation unit commonly named Banded Iron Formation (BIF) present in the Deposits A, D, and E. The iron mineral is mainly magnetite with little amounts of hematite, martite and hydroxide iron (limonite) related to weathering. The relationship between geology and mineralization is very close, and has been discussed in Section 6 - Geology and Section 7 - Deposits Type.

To summarize the mineralization type, the iron ore formation is principally composed of recrystallized magnetite, fine to medium-fine grained, in a banded or lamellae iron ore rock for the Deposit A. Deposit E is mainly granular and disseminated, recrystallized, obliterated the sedimentary BIF aspect. Deposit D retains part of the BIF aspect and partially coarse disseminated grains. The waste and associated minerals are principally quartz, actinolite, tremolite, diopsite, grunerite, chlorite and biotite in proportionally decreasing order. The internal associated waste bands included in the ore are some mica schists bands. Probably some of these micas bands are related to the intense, squeezed and isoclinals folding. The average head grade varies from 34 to 37% Fe. The hematite content is very low or not present at all.

The iron ore facies sedimentation varies from fine banded or lamellae high grade iron content (2-3 mm to 1 cm bands) interlayered with waste bands (low grade disseminated bands), to more massive disseminated magnetite. The magnetite grain size varies from fine to medium-fine in Deposit A, medium-fine to coarse in the deposit D, to very coarse in the deposit E.


Posted on May 31, 2013

Ferroniobium is produced through electric-furnace aluminothermy using pyrochlore concentrate or technical niobium pentoxide. It is used in the smelting of structural steel and heatresistant alloys.

A silvery, soft, ductile metallic element that occurs chiefly in columbite-tantalite and is used in steel alloys, arc welding, and superconductivity research.

Iron Ore
A mineral from which iron can be extracted that contrains metal that is valuable enough to be mined.

A very hard, heavy, gray metallic element that is exceptionally resistant to chemical attack below 150°C. It is used to make light-bulb filaments, electrolytic capacitors, lightning arresters, nuclear reactor parts, and some surgical instruments.

A bright white, soft, ductile metallic element found in several minerals, notably vanadinite and carnotite, having good structural strength and used in rust-resistant high-speed tools, as a carbon stabilizer in some steels, as a titanium-steel bonding agent, and as a catalyst.

Oka (Cayuga: Ganehsada:geh [4]) is a Canadian village on the northern bank of the Ottawa River (Rivière des Outaouais in French), northwest of Montreal, Quebec. Located in the Lower Laurentians on Lake of Two Mountains, the main thoroughfare through town is Quebec Route 344. It was originally settled by Europeans in 1721 by the Sulpician Order branch of the Roman Catholic Church. 






Niobium 101

Posted on May 31, 2013

A highly stable oxide forms on the surface of niobium when it is exposed to air. In Quebec, the host mineral of niobium is pyrochlore, by far the main source of the niobium currently produced in the world. It also combines easily with alloys, and becomes a superconductor at temperatures certain temperature.

Niobium is generally consumed in one of three forms

  • Ferroniobium
  • Niobium pentoxide
  • Niobium alloys


The steel industry consumes nearly 90% of these products, mostly in the form of ferroniobium. Ferroniobium is primarily used in high strength, low-alloy steel and stainless steel. High strength steel alloys containing niobium are generally used in the construction, pipeline and automotive industries. Stainless steel containing niobium is mostly used in automobile exhaust manifolds, pressure vessels and firewalls. Other niobium products are used in super alloys found in the aerospace industry, superconductors that find their main commercial application in magnetic resonance imaging, and non-metallic products such as optic glass and ceramic capacitors, among other things.

Niobium Production in Quebec
In Quebec, the Niobec mine in Saguenay-Lac-Saint-Jean produces niobium in the form of ferroniobium. Canada is the second largest niobium producer in the world after Brazil, generating 3,300 tonnes of niobium contained in ferroniobium.

Excerpts from the US Geological Survey Minerals Yearbook 1999

“Columbium” and “niobium” are synonymous names for the chemical element with atomic number 41; “columbium" was the name given in 1801, and “niobium” was the name officially designated by the International Union of Pure and Applied Chemistry in 1950. The metal conducts heat and electricity well and is characterized by a high melting point (about 2,470C), resistance to corrosion, and ease of fabrication.

Niobium is produced from the pyrochlore concentrate, niobium pentoxide (Nb2O5), extracted from open pit and110630 b80te niobium-minerai sn635 underground mines. The concentrate is the converted to ferroniobium. Ferroniobium is used worldwide, mostly as an alloying element in steels and in super alloys. Because of its refractory nature, appreciable amounts of niobium in the form of high-purity ferroniobium and nickel niobium are used in nickel-, cobalt-, and ironbase super alloys for such applications as jet engine components, rocket subassemblies, and heat resisting and combustion equipment. Niobium carbide is used in cemented carbides to modify the properties of the cobalt-bonded tungsten carbide-based material. It is usually used with carbides of such metals as tantalum and titanium. Niobium oxide is the intermediate product used in the manufacture of high-purity ferroniobium, nickel niobium, niobium metal, and niobium carbide. Acceptable substitutes, such as molybdenum, tantalum, titanium, tungsten, and vanadium, are available for some niobium applications, but substitution may lower performance and/or cost-effectiveness.

Other article on Niobium




Side Items

Posted on May 30, 2013

MONTRÉAL, QC, le 17 août 2009 – Niocan inc. (TSX:NIO) a annoncé aujourd’hui une mise à jour de son projet relatif à la propriété de Grande-Baleine, propriété qu’elle détient à 100%.

En juillet 2009, la compagnie a recueilli des nouvelles carottes de forage et des carottes prélevées en 1957-60 par Belcher Mining Corporation LTD des sites minéralisés A, D et E (36% Fe magnétite) sur la propriété de Grande-Baleine (17 098 acres). Cette propriété est située à 80 kilomètres des villages Kuujjuarapik – Whapmagoostui dans la Baie d’Hudson.

L’objectif de ce programme 2009, au coût approximatif de $250,000, est d’effectuer des tests métallurgiques modernes afin de confirmer la taille optimale du grain de minerai des gîtes (ressources historiques) pour une libération maximale du fer.

Des travaux intensifs d’exploration effectués dans les années 1960 indiquent une estimation du tonnage et de la teneur de quelque 942 millions de tonnes de ressource minérale de fer (Belcher Mining Corporation Ltd., November 1960 by L.M. Scofield). Selon le rapport rendu par Met-Chem le 31 août 2006, « les méthodes de calcul utilisées dans la préparation de ce rapport étaient considérées comme fiables dans les années 1960; toutefois les calculs de réserves minérales ou de ressources minérales sont généralement basées sur des logiciels miniers qui sont plus robustes et qui peuvent effectuer des calculs en 3 dimensions. Il sera nécessaire de combiner des informations historiques manquantes avec des informations nouvelles avant d’être en mesure d’utiliser les indicateurs de tests de concentration pour les estimés nouveaux de ressources minérales ou de réserves afin d’être conforme à NI 43-101. » (traduction libre).

Dans la mesure où la compagnie n’a pas établi de ressources minérales et n’a pas effectué d’étude préliminaire de faisabilité, elle ne peut, depuis l’entrée en vigueur de la norme canadienne 43-101, parler de « réserves minérales » ni de « réserves de minerai », sans mettre les mises en garde appropriées afin d’illustrer qu’il s’agit d’une estimation historique. Aussi, comme aucune personne qualifiée n’a effectué le travail requis pour classer les ressources ou les réserves faisant l'objet de l'estimation historique dans les ressources minérales ou les réserves minérales à jour, Niocan ne considère pas les ressources ou les réserves faisant l'objet de l'estimation historique comme étant des ressources minérales ou des réserves minérales, au sens des articles 1.2 et 1.3 du Règlement 43-101, qui soient à jour, et, en conséquence, on ne devrait pas se fier à l'estimation historique.

Niocan doit mettre à jour ces estimations et les études des années 50 et 60 afin de démontrer la faisabilité d’une mine de fer contemporaine et ainsi de pouvoir susciter de l’intéressement d’un ou plusieurs partenaires dans ce projet potentiel. Niocan désire identifier un partenaire ayant la capacité financière requise afin de partager les coûts d’une évaluation préliminaire en contrepartie de l’obtention d’un pourcentage de

propriété, toute en conservant éventuellement une position dans ce gîte historique, en référant aux travaux géologiques effectués dans les années 60. Lorsque le projet sera commencé, la compagnie prévoit que l’évaluation préliminaire s’échelonnera sur une période de trois (3) saisons de calendrier.

Un rapport à être préparé par Met-Chem sera livré dans 3-4 mois lorsque les tests seront complétés par le consortium de recherche appliquée en traitement et transformation des substances minérales (Corem), de Québec (Québec).

Pour plus d’information,
Niocan Inc.
G. Bernard Coulombe
Président et chef de la direction
514-843-4809 (fax)

MONTREAL, QC, August 17, 2009 – Niocan Inc. (TSX:NIO) today announced an update of its 100% owned Great Whale Iron Property (“GWIP”) project.

In July 2009, the Company collected new drilled core samples and cores drilled in 1957-60 by Belcher Mining Corporation Ltd from the A, D and E iron mineralized (36% Fe magnetite) sites on the GWIP (17,098 acres) located 80 kilometers from the twin villages of Kuujjuarapik – Whapmagoostui on the Hudson Bay.

The objective of the 2009 program, at an approximate cost of $250,000, is to perform modern metallurgical tests to confirm the optimum ore grain size of the prospects (historical resources) for maximum iron liberation.

Intensive exploration carried out in the 1960’s indicated an estimate of tonnage and grade of approximately 942 million tons of iron historical resources (Belcher Mining Corporation Ltd., November 1960 by L.M. Scofield). According to the report prepared by Met-Chem on August 31, 2006: “In the 1960’s, such calculation method was considered reliable. However today mineral resources or reserve calculations are generally based on mining software which are more robust and can perform 3D calculation. It will be necessary to twin some historic holes with new ones in order to establish a correlation between historic information and new ones before being able to use concentration tests indicator for new mineral resource or reserve estimates for compliance with NI 43-101’’.

Since the Company has not established mineral resources and has not performed a preliminary feasibility study, it can not, since the coming into force of NI 43-101, refer to “mineral reserves’’ without including the appropriate warnings to illustrate that this constitutes an historical estimate. In addition, since no qualified person has performed sufficient work required to classify the historical estimate as current mineral resources or mineral reserves, Niocan is not treating the historical estimate as current mineral resources or mineral reserves as defined in sections 1.2 and 1.3 of NI 43-101, and therefore, the historical estimate should not be relied upon.

Niocan must update the estimates and studies made in the 50’s and 60’s to demonstrate the feasibility of a contemporary iron mine in order to interest one or more partners in this potential project. Niocan wishes to identify a partner with the financing capability to share the cost of a scoping study for a percentage of ownership while eventually retaining a position in this historical mineral prospect, referring to the geological works done in the 60’s. Once the project is started, the Company expects that it would take approximately three (3) calendar seasons to conduct the scoping study.

A report to be prepared by Met-Chem will be delivered in 3-4 months when the tests are completed by Research Consortium in Mineral Processing (Corem) in Quebec City.
For more information, please contact
G. Bernard Coulombe
President & CEO
(514) 288-8506
(514) 843-4809

MONTRÉAL, QC, le 17 août 2009 – Niocan inc. (TSX:NIO) a annoncé aujourd’hui une mise à jour de son projet relatif à sa mine de Niobium à Oka.

Niocan continue à attendre l’émission d’un certificat d’autorisation (« CA ») des autorités gouvernementales afin de construire sa mine de niobium à Oka, Québec. Niocan considère qu’elle a fourni aux autorités toutes les informations et la documentation requises afin d’obtenir le CA du Ministère du développement durable, de l’environnement et des parcs (« MDDEP ») du gouvernement du Québec. Juin 2008 est la dernière date à laquelle la compagnie a fourni des documents au MDDEP, soit des documents finaux pour la révision des plans du complexe minier, suivant une requête à cet effet du MDDEP. Malgré les tentatives répétées de la compagnie au cours des derniers mois et des dernières années afin d’obtenir une indication du MDDEP quant à ses intentions relativement à l’émission du CA, la compagnie n’a toujours pas reçu d’information concluante à cet effet.


Pour plus d'info pdficon small Voir le pdf

MONTREAL, QC, August 17, 2009 – Niocan Inc. (TSX:NIO) today announced an update to its shareholders regarding its Oka Niobium Mine project.

Niocan continues to await the issuance of the Certificate of Authorization (“CA”) from governmental authorities to build its Niobium mine in Oka, Quebec. Niocan considers it has provided all necessary information and documentation to the authorities to receive the CA from the Ministry of Sustainable Development, Environment and Parks (“MSDEP”) of the Quebec Government. The Company last provided documents to the MSDEP in June 2008, when final documents for the review of the design and drawings of the mine complex were provided upon request from the MSDEP. In spite of the Company’s repeated attempts over the past months and years to obtain an indication from the MSDEP relative to its intent on the issuance of the CA, the Company has yet to receive conclusive information in this respect.

For more info pdficon small View this press release in pdf